Active Task Selection for Lifelong Machine Learning
نویسندگان
چکیده
In a lifelong learning framework, an agent acquires knowledge incrementally over consecutive learning tasks, continually building upon its experience. Recent lifelong learning algorithms have achieved nearly identical performance to batch multi-task learning methods while reducing learning time by three orders of magnitude. In this paper, we further improve the scalability of lifelong learning by developing curriculum selection methods that enable an agent to actively select the next task to learn in order to maximize performance on future learning tasks. We demonstrate that active task selection is highly reliable and effective, allowing an agent to learn high performance models using up to 50% fewer tasks than when the agent has no control over the task order. We also explore a variant of transfer learning in the lifelong learning setting in which the agent can focus knowledge acquisition toward a particular target task.
منابع مشابه
Scalable Lifelong Learning with Active Task Selection
The recently developed Efficient Lifelong Learning Algorithm (ELLA) acquires knowledge incrementally over a sequence of tasks, learning a repository of latent model components that are sparsely shared between models. ELLA shows strong performance in comparison to other multi-task learning algorithms, achieving nearly identical performance to batch multi-task learning methods while learning task...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملUsing Task Descriptions in Lifelong Machine Learning for Improved Performance and Zero-Shot Transfer
Knowledge transfer between tasks can improve the performance of learned models, but requires an accurate estimate of the inter-task relationships to identify the relevant knowledge to transfer. These inter-task relationships are typically estimated based on training data for each task, which is inefficient in lifelong learning settings where the goal is to learn each consecutive task rapidly fr...
متن کاملMulti-Engine Machine Translation as a Lifelong Machine Learning Problem
We describe an approach for multi-engine machine translation that uses machine learning methods to train one or several classifiers for a given set of candidate translations. Contrary to existing approaches in quality estimation which only consider a single translation at a time, we explicitly model pairwise comparison with our feature vectors. We discuss several challenges our method is facing...
متن کامل